If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+8x-280=0
a = 3; b = 8; c = -280;
Δ = b2-4ac
Δ = 82-4·3·(-280)
Δ = 3424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3424}=\sqrt{16*214}=\sqrt{16}*\sqrt{214}=4\sqrt{214}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{214}}{2*3}=\frac{-8-4\sqrt{214}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{214}}{2*3}=\frac{-8+4\sqrt{214}}{6} $
| 4y^2-4y+4=3 | | ×+×-3+2x+1=62 | | 5=6+n | | 10^5x-2=348 | | -3+z=-17 | | 2w+3=4w^2+14w+12 | | 1/2(8x-16x-4)-3x-3=1/4(8x-16) | | -3-2x=20 | | -1+6x=31 | | 0.24x+78.9=x | | z+2/3=4/11 | | x^-12+49=22 | | 19h-16h-h-2h+2h=10 | | 18x-(8x-3)=13 | | 2.5x+1.4=0.5x+2 | | 3/8=-2x+4 | | 7/3t-5=15 | | 6=f-1 | | 10/x=15 | | 19h-16h-2h-h=10 | | 6+(3z+1/8)=2z+11 | | 19-3x=-23 | | v-9=17 | | b-31=27 | | 4x-6=+9 | | 3=1y+21 | | 13j-j-6j+2j=16 | | 2(3-4x)=4x+10 | | 4x-6=x=9 | | (20x)+(5x^2)=385 | | 7w-15=27 | | -3/4x=1/2x+5/4 |